Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1368685, 2024.
Article in English | MEDLINE | ID: mdl-38510250

ABSTRACT

Background: Glioblastoma (GBM), with its high recurrence and mortality rates, makes it the deadliest neurological malignancy. Oxidative phosphorylation is a highly active cellular pathway in GBM, and NFYB is a tumor-associated transcription factor. Both are related to mitochondrial function, but studies on their relationship with GBM at the single-cell level are still scarce. Methods: We re-analyzed the single-cell profiles of GBM from patients with different subtypes by single-cell transcriptomic analysis and further subdivided the large population of Glioma cells into different subpopulations, explored the interrelationships and active pathways among cell stages and clinical subtypes of the populations, and investigated the relationship between the transcription factor NFYB of the key subpopulations and GBM, searching for the prognostic genes of GBM related to NFYB, and verified by experiments. Results: Glioma cells and their C5 subpopulation had the highest percentage of G2M staging and rGBM, which we hypothesized might be related to the higher dividing and proliferating ability of both Glioma and C5 subpopulations. Oxidative phosphorylation pathway activity is elevated in both the Glioma and C5 subgroup, and NFYB is a key transcription factor for the C5 subgroup, suggesting its possible involvement in GBM proliferation and recurrence, and its close association with mitochondrial function. We also identified 13 prognostic genes associated with NFYB, of which MEM60 may cause GBM patients to have a poor prognosis by promoting GBM proliferation and drug resistance. Knockdown of the NFYB was found to contribute to the inhibition of proliferation, invasion, and migration of GBM cells. Conclusion: These findings help to elucidate the key mechanisms of mitochondrial function in GBM progression and recurrence, and to establish a new prognostic model and therapeutic target based on NFYB.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/pathology , Oxidative Phosphorylation , Brain Neoplasms/pathology , Cell Line, Tumor , Transcription Factors/metabolism , CCAAT-Binding Factor/metabolism
2.
Plant Physiol Biochem ; 207: 108436, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38367388

ABSTRACT

Drought stress is a major abiotic stress which severely reduces the plant growth and limits agricultural productivity. Previous studies have demonstrated that lutein directly synthesized by the carotenoid epsilon-ring hydroxylase gene (LUT1) played crucial roles in regulating drought response. Notwithstanding the myriad studies on LUT1's response to drought stress in certain plant species such as Arabidopsis, the precise function mechanisms within tree species remain ambiguously understood. Our study reveals that under drought stress, TgLUT1, a novel LUT gene instrumental in ß-lutein biosynthesis, was markedly up-regulated in Torreya grandis. Subcellular localization assay indicated that TgLUT1 protein was localized to chloroplasts. Phenotypic analysis showed that overexpression of TgLUT1 enhanced the tolerance of tomato to drought stress. Overexpressing of TgLUT1 increased the values of maximal photochemical efficiency of photosystem II (Fv/Fm), net photosynthetic rate (Pn) and non-photochemical quenching (NPQ), and reduced the accumulation of hydrogen peroxide (H2O2), malondialdehyde (MDA) content and electrolyte leakage percentage in response to drought stress. Furthermore, overexpression of TgLUT1 decreased the stomatal conductance to reduce the water loss rate exposed to drought stress. In addition, yeast one-hybrid assay, dual luciferase assay system and qRT-PCR results showed that TgWRKY10 down-regulated by drought stress inhibited the expression of TgLUT1 by directly binding to the TgLUT1 promoter. Collectively, our results show that TgWRKY10, down-regulated by drought stress, negatively regulates the expression of TgLUT1 to modulate the drought stress response. This study contributes to a more comprehensive understanding of LUT1's function in the stress responses of economically significant forest plants.


Subject(s)
Droughts , Taxaceae , Hydrogen Peroxide/metabolism , Lutein , Photosynthesis , Stress, Physiological/genetics , Taxaceae/genetics , Taxaceae/metabolism , Plants, Genetically Modified/genetics , Gene Expression Regulation, Plant
3.
Int J Mol Sci ; 24(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38069348

ABSTRACT

Torreya grandis is native Chinese tree species of economic significance, renowned for its long lifespan and the rich nutritional value of its nuts. In this study, we analyzed the morphological characteristics, metabolites, associated gene expressions, and regulatory mechanism in nuts from young (10 years old) and old (1000 years old) T. grandis trees. We observed that the length, width, and weight of nuts from older trees were considerably greater than those from younger trees. Metabolomic analysis revealed that the concentrations of 18 amino acids and derivatives (including histidine and serine) in nuts from older trees were markedly higher than those in nuts from younger trees. Transcriptome and metabolomic correlation analysis identified 16 genes, including TgPK (pyruvate kinase), TgGAPDH (glyceraldehyde 3-phosphate dehydrogenase), and others, which exhibit higher expression levels in older trees compared to younger trees, as confirmed by qRT-PCR. These genes are associated with the biosynthesis of histidine, glutamic acid, tryptophan, and serine. Transient expression of TgPK in tobacco led to increased pyruvate kinase activity and amino acid content (histidine, tryptophan, and serine). Additionally, dual-luciferase assays and yeast one-hybrid results demonstrated that TgWRKY21 positively regulates TgPK expression by directly binding to the TgPK promoter. These findings not only demonstrate the nutritional differences between nuts from young and old trees but also offer fresh insights into the development of nutritional sources and functional components based on nuts from old trees, enriching our understanding of the potential benefits of utilizing nuts from older trees.


Subject(s)
Nuts , Taxaceae , Nuts/chemistry , Transcriptome , Trees/metabolism , Amino Acids/metabolism , Histidine/metabolism , Tryptophan/metabolism , Pyruvate Kinase/metabolism , Taxaceae/metabolism , Serine/genetics , Serine/metabolism , Metabolomics
4.
Int J Biol Macromol ; 253(Pt 2): 126702, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37673161

ABSTRACT

ß-Carotene functions in plant growth and development and plays an important role in resisting abiotic stress, such as drought and salt stress. The specific function and mechanism by which ß-carotene responds to waterlogging stress, however, remain elusive. In this study, we found that ß-carotene content and lycopene cyclase (TgLCYB1) expression, both in leaves and roots of Torreya grandis, were increased under waterlogging treatment. Subcellular localization assays indicated that TgLCYB1 was localized in the chloroplasts. Phenotypic, physiological, and metabolome analysis showed that overexpression of TgLCYB1 enhanced the tolerance of tomato plants to waterlogging stress. Furthermore, application of a LCYB enzyme inhibitor, 2-(4-chlorophenylthio)-triethylamine hydrochloride, markedly enhanced the sensitivity of T. grandis to waterlogging stress. In addition, yeast one-hybrid assay, the dual luciferase assay system, and real-time quantitative PCR indicated that waterlogging stress induced TgWRKY22 to increase TgLCYB1 expression by binding to the TgLCYB1 promoter. Collectively, our results indicated that TgWRKY22 positively regulated TgLCYB1 expression to improve the activities of antioxidant enzyme and increase the levels of some key metabolites, thereby relieving waterlogging-induced oxidative damage, and consequently modulating the waterlogging stress response. This study contributes to a more comprehensive understanding of carotenoid functions and the role LCYB genes play in plant stress response.


Subject(s)
Taxaceae , beta Carotene , Oxidative Stress , Stress, Physiological , Carotenoids
5.
J Hazard Mater ; 460: 132274, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37643573

ABSTRACT

Aluminum (Al) toxicity is a significant constraint on agricultural productivity worldwide. Melatonin (MT) has been shown to alleviate Al toxicity in plants; however, the underlying mechanisms remain largely unknown. Here, we employed a combination of physiological and molecular biology techniques to examine the role of MT in mitigating Al toxicity of hickory. We found that MT decreased the contents of cell wall pectin, hemicellulose, Al, and Al-induced massive reactive oxygen species accumulation in the roots of hickory. Transcriptomic analysis revealed that MT may alleviate root tip Al stress by regulating Al-responsive and nonresponsive pathways. Co-expression regulatory network and dual-luciferase receptor assays revealed that transcription factors, CcC3H12 and CcAZF2, responded to MT and significantly activated the expression of two cell wall pectin-related genes, CcPME61 and CcGAE6, respectively. Further, yeast one-hybrid and electrophoretic mobility shift assay (EMSA) assays verified that CcC3H12 and CcAZF2 regulated CcPME61 and CcGAE6, respectively, by directly binding to their promoters. Overexpression of CcPME61 enhanced the Al sensitivity of Arabidopsis thaliana. Our results indicate that MT can improve Al tolerance of hickory via multiple pathways, which provides a new perspective for the study of the mechanism of MT in alleviating abiotic stress.


Subject(s)
Arabidopsis , Melatonin , Melatonin/pharmacology , Aluminum/toxicity , Agriculture , Arabidopsis/genetics , Pectins
6.
Chem Biol Drug Des ; 102(4): 870-881, 2023 10.
Article in English | MEDLINE | ID: mdl-37495546

ABSTRACT

Sinomenine has been found to have antitumor effects in a variety of cancers, including gastric cancer. Circular RNA (circRNA) is an important regulator of gastric cancer progression. However, it is not known whether Sinomenine mediates gastric cancer processes by regulating circRNA-related pathways. Quantitative real-time PCR was used to measure the expression of circTRPM7, microRNA-145-5p (miR-145-5p), and pre-B-cell leukemia homeobox 3 (PBX3). MTT assay, colony formation assay, EdU assay, transwell assay, wound-healing assay, and flow cytometry were used to detect cell proliferation, migration, invasion, and apoptosis. The expression of related proteins was detected by Western blot. Mechanically, the interaction of miR-145-5p with circTRPM7/PBX3 was validated by dual-luciferase reporter assay and RIP assay. Our study showed that circTRPM7 expression was reduced in Sinomenine-treated gastric cancer cells. Moreover, overexpression of circTRPM7 upregulated the growth and metastasis of Sinomenine-treated gastric cancer cells. CircTRPM7 could sponge miR-145-5p, and miR-145-5p reversed the effect of circTRPM7 on the growth and metastasis of Sinomenine-treated gastric cancer cells. PBX3 was the target of miR-145-5p, and knockdown of PBX3 could restore the in-miR-145-5p promotion effect on the malignant behavior of Sinomenine-treated gastric cancer cells. To sum up, our data indicated that Sinomenine played an antitumor role in gastric cancer cells via circTRPM7/miR-145-5p/PBX3 axis.


Subject(s)
MicroRNAs , Stomach Neoplasms , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , MicroRNAs/genetics , RNA, Circular/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics
7.
J Integr Plant Biol ; 65(8): 1904-1917, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37149782

ABSTRACT

Plant growth and development are significantly hampered in saline environments, limiting agricultural productivity. Thus, it is crucial to unravel the mechanism underlying plant responses to salt stress. ß-1,4-Galactan (galactan), which forms the side chains of pectic rhamnogalacturonan I, enhances plant sensitivity to high-salt stress. Galactan is synthesized by GALACTAN SYNTHASE1 (GALS1). We previously showed that NaCl relieves the direct suppression of GALS1 transcription by the transcription factors BPC1 and BPC2 to induce the excess accumulation of galactan in Arabidopsis (Arabidopsis thaliana). However, how plants adapt to this unfavorable environment remains unclear. Here, we determined that the transcription factors CBF1, CBF2, and CBF3 directly interact with the GALS1 promoter and repress its expression, leading to reduced galactan accumulation and enhanced salt tolerance. Salt stress enhances the binding of CBF1/CBF2/CBF3 to the GALS1 promoter by inducing CBF1/CBF2/CBF3 transcription and accumulation. Genetic analysis suggested that CBF1/CBF2/CBF3 function upstream of GALS1 to modulate salt-induced galactan biosynthesis and the salt response. CBF1/CBF2/CBF3 and BPC1/BPC2 function in parallel to regulate GALS1 expression, thereby modulating the salt response. Our results reveal a mechanism in which salt-activated CBF1/CBF2/CBF3 inhibit BPC1/BPC2-regulated GALS1 expression to alleviate galactan-induced salt hypersensitivity, providing an activation/deactivation fine-tune mechanism for dynamic regulation of GALS1 expression under salt stress in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Salt Stress , Adaptation, Physiological , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cold Temperature , Gene Expression Regulation, Plant , Promoter Regions, Genetic/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Salt Stress/genetics
8.
Molecules ; 28(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37110856

ABSTRACT

Metal-organic framework (MOF) materials possess a large specific surface area, high porosity, and atomically dispersed metal active sites, which confer excellent catalytic performance as peroxide (peroxodisulfate (PDS), peroxomonosulfate (PMS), and hydrogen peroxide (H2O2)) activation catalysts. However, the limited electron transfer characteristics and chemical stability of traditional monometallic MOFs restrict their catalytic performance and large-scale application in advanced oxidation reactions. Furthermore, the single-metal active site and uniform charge density distribution of monometallic MOFs result in a fixed activation reaction path of peroxide in the Fenton-like reaction process. To address these limitations, bimetallic MOFs have been developed to improve catalytic activity, stability, and reaction controllability in peroxide activation reactions. Compared with monometallic MOFs, bimetallic MOFs enhance the active site of the material, promote internal electron transfer, and even alter the activation path through the synergistic effect of bimetals. In this review, we systematically summarize the preparation methods of bimetallic MOFs and the mechanism of activating different peroxide systems. Moreover, we discuss the reaction factors that affect the process of peroxide activation. This report aims to expand the understanding of bimetallic MOF synthesis and their catalytic mechanisms in advanced oxidation processes.

9.
J Hazard Mater ; 445: 130647, 2023 03 05.
Article in English | MEDLINE | ID: mdl-37056011

ABSTRACT

As a 2D nanomaterial, MXene (Ti3C2Tx) has shown enormous potential for use in fields such as biomedical and environmental pollution. However, the utilization of MXene materials in plants has received little attention thus far. The efficient use of MXene materials in agriculture and forestry is first highlighted in this study. Phenotypic and physiological analyses indicated that MXene application significantly enhanced the tolerance of Torreya grandis to Pb stress by reducing Pb accumulation. Furthermore, we illustrated two independent mechanisms of MXene material in reducing Pb accumulation in T. grandis: 1) MXene converted the available form of Pb into stable forms via its strong Pb adsorption ability, resulting in a decrease of the available form of Pb in soils, and 2) MXene application obviously increased the cell wall pectin content to restrict more Pb in the cell wall by regulating the expression of pectin synthesis/metabolism-related genes (TgPLL2, TgPLL11, TgPG5, TgPG30, TgGAUT3 and TgGAUT12) in T. grandis roots. Overall, this finding provides insight into the application of MXene material in modern agriculture and forestry, which will facilitate the rapid development of nanotechnology in sustainable agriculture and forestry.


Subject(s)
Lead , Taxaceae , Lead/toxicity , Titanium , Pectins
10.
Indian J Cancer ; 60(4): 562-569, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-36861729

ABSTRACT

BACKGROUND: Apatinib exhibits a synergistic effect with transarterial chemoembolization (TACE) by inhibiting TACE-induced neoangiogenic reaction in hepatocellular carcinoma (HCC) patients. But apatinib plus drug-eluting bead TACE (DEB-TACE) is rarely reported as a bridging therapy to surgery. This study aimed to evaluate the efficacy and safety of apatinib plus DEB-TACE as a bridge to surgical resection in intermediate-stage HCC patients. MATERIALS AND METHODS: Thirty-one intermediate-stage HCC patients who received apatinib plus DEB-TACE as a bridging therapy to surgery were enrolled. After the bridging therapy, complete response (CR), partial response (PR), stable disease (SD), progressive disease (PD), and objective response rate (ORR) were evaluated; meanwhile, relapse-free survival (RFS) and overall survival (OS) were determined. RESULTS: After the bridging therapy, three (9.7%), twenty one (67.7%), seven (22.6%), and twenty four (77.4%) patients achieved CR, PR, SD, and ORR, respectively; besides, PD did not occur. The successful downstaging rate was 18 (58.1%). The median (95% confidence interval [CI]) accumulating RFS was 33.0 (19.6 - 46.6) months. Besides, the median (95% CI) accumulating OS was 37.0 (24.8 - 49.2) months. HCC patients with successful downstaging showed a higher accumulating RFS rate ( P = 0.038) and similar accumulating OS rate ( P = 0.073) compared to those without successful downstaging. The overall incidence of adverse events was relatively low. Besides, all the adverse events were mild and controllable. The most frequent adverse events included pain (14 [45.2%]) and fever (9 [29.0%]). CONCLUSION: Apatinib plus DEB-TACE as a bridging therapy to surgical resection displays good efficacy and safety profile in intermediate-stage HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Pyridines , Humans , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Treatment Outcome
11.
J Pathol ; 259(4): 388-401, 2023 04.
Article in English | MEDLINE | ID: mdl-36640260

ABSTRACT

Switching of vascular smooth muscle cells (VSMCs) from a contractile phenotype to a dedifferentiated (proliferative) phenotype contributes to neointima formation, which has been demonstrated to possess a tumor-like nature. Dysregulated glucose and lipid metabolism is recognized as a hallmark of tumors but has not thoroughly been elucidated in neointima formation. Here, we investigated the cooperative role of glycolysis and fatty acid synthesis in vascular injury-induced VSMC dedifferentiation and neointima formation. We found that the expression of hypoxia-inducible factor-1α (HIF-1α) and its target 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3), a critical glycolytic enzyme, were induced in the neointimal VSMCs of human stenotic carotid arteries and wire-injured mouse carotid arteries. HIF-1α overexpression led to elevated glycolysis and resulted in a decreased contractile phenotype while promoting VSMC proliferation and activation of the mechanistic target of rapamycin complex 1 (mTORC1). Conversely, silencing Pfkfb3 had the opposite effects. Mechanistic studies demonstrated that glycolysis generates acetyl coenzyme A to fuel de novo fatty acid synthesis and mTORC1 activation. Whole-transcriptome sequencing analysis confirmed the increased expression of PFKFB3 and fatty acid synthetase (FASN) in dedifferentiated VSMCs. More importantly, FASN upregulation was observed in neointimal VSMCs of human stenotic carotid arteries. Finally, interfering with PFKFB3 or FASN suppressed vascular injury-induced mTORC1 activation, VSMC dedifferentiation, and neointima formation. Together, this study demonstrated that PFKFB3-mediated glycolytic reprogramming and FASN-mediated lipid metabolic reprogramming are distinctive features of VSMC phenotypic switching and could be potential therapeutic targets for treating vascular diseases with neointima formation. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Muscle, Smooth, Vascular , Vascular System Injuries , Mice , Humans , Animals , Hyperplasia/pathology , Muscle, Smooth, Vascular/pathology , Cell Proliferation , Neointima/pathology , Cell Movement , Cells, Cultured , Disease Models, Animal , Phenotype , Fatty Acids/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/pharmacology , Myocytes, Smooth Muscle/pathology
12.
Curr Res Food Sci ; 5: 2309-2315, 2022.
Article in English | MEDLINE | ID: mdl-36467747

ABSTRACT

Torreya grandis is a characteristic rare economic tree species in subtropical mountainous areas. The kernels of T. grandis have rich content of organic acids, and malate is the predominant organic acid in T. grandis kernels. However, the contents, biosynthesis/metabolism pathway and transcriptional regulation of malate in developing T. grandis kernels remain completely unknown. Here, the organic acid composition in developing T. grandis kernels was first analyzed. The results showed that the content of malate was increased during the maturation T. grandis kernels. A malate synthase (TgMLS) gene might be involved in the accumulation of malate based on transcriptome data, gene expression and enzyme activity analysis. Transient expression of TgMLS in tobacco resulted in the high malate synthase activity and malate content. Furthermore, a basic helix-loop-helix transcription factor (bHLH), TgbHLH87 was identified to positively regulate the TgMLS expression via directly binding the TgMLS promoter. Our finding contributes to mechanism underlying malate accumulation in T. grandis kernels.

13.
Br J Pharmacol ; 179(21): 4974-4991, 2022 11.
Article in English | MEDLINE | ID: mdl-35834356

ABSTRACT

BACKGROUND AND PURPOSE: Macrophage-rich atherosclerotic arteries are highly active in glycolysis. PFKFB3, a key glycolytic enzyme, has emerged as a potential therapeutic target in atherosclerosis. Small-molecule inhibitors of PFKFB3, such as 3PO and PFK158, have demonstrated efficacy in hampering atherogenesis in preclinical models. However, genetic studies elucidating the role of Pfkfb3 in atherogenesis need to be conducted to validate pharmacological findings and to unveil potential pharmacological side effects. EXPERIMENTAL APPROACH: Apoe-/- mice with global heterozygous or myeloid cell-specific Pfkfb3 deficiency were fed a Western diet (WD), after which atherosclerosis development was determined. Monocyte subsets in atherosclerotic mice and patients were examined by flow cytometry. Monocyte infiltration was assayed by a Ly6Chi monocyte-specific latex labelling procedure. In situ efferocytosis was assessed on mouse aortic root sections. Additionally, metabolic status, macrophage motility, efferocytosis, and involved mechanisms were analysed in peritoneal macrophages. KEY RESULTS: Global heterozygous or myeloid cell-specific Pfkfb3 deficiency reduced atherogenesis in Apoe-/- mice. Mechanistic studies showed that PFKFB3 controlled the proliferation and infiltration of proinflammatory monocytes. Moreover, PFKFB3 expression was associated with inflammatory monocyte expansion in patients with atherosclerotic coronary artery disease. Surprisingly, homozygous loss of Pfkfb3 impaired macrophage efferocytosis and exacerbated atherosclerosis in Apoe-/- mice. Mechanistically, PFKFB3-driven glycolysis was shown to be essential for actin polymerization, thus aiding the efferocytotic function of macrophages. CONCLUSION AND IMPLICATIONS: Collectively, these findings suggest the existence of a double-edged sword effect of myeloid PFKFB3 on the pathogenesis of atherosclerosis and highlight the need for caution in developing anti-atherosclerotic strategies that target PFKFB3.


Subject(s)
Atherosclerosis , Monocytes , Actins/metabolism , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , Biology , Macrophages , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Phosphofructokinase-2 , Pyridines , Quinolines
14.
Pharmacol Res ; 179: 106208, 2022 05.
Article in English | MEDLINE | ID: mdl-35398239

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells which are immunosuppressive and glycolytically inactive in inflammatory diseases. However, it is unknown whether MDSCs contribute to ischemic stroke and how glycolysis regulates MDSC function in such a context. Here, we showed that MDSCs arise in the blood of patients at early phase of stroke. Similar results were observed in temporary middle cerebral artery occlusion-induced cerebral ischemic mice. Pharmaceutical exhaustion of MDSCs aggravated, while adoptive transfer of MDSCs rescued the ischemic brain injury. However, the differentiation of MDSCs into immunopotent myeloid cells which coincides with increased glycolysis was observed in the context of ischemic stroke. Mechanistically, the glycolytic product lactate autonomously induces MDSC differentiation through activation of mTORC1, and paracrinely activates Th1 and Th17 cells. Moreover, gene knockout or inhibition of the glycolytic enzyme PFKFB3 increased endogenous MDSCs by blocking their differentiation, and improved ischemic brain injury. Collectively, these results revealed that glycolytic switch decreases the immunosuppressive and neuroprotective role of MDSCs in ischemic stroke and pharmacological targeting MDSCs via glycolysis inhibition constitutes a promising therapeutic strategy for ischemic stroke.


Subject(s)
Brain Injuries , Ischemic Stroke , Myeloid-Derived Suppressor Cells , Animals , Glycolysis , Humans , Immunosuppressive Agents , Mice , Mice, Inbred C57BL
15.
Toxics ; 10(2)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35202256

ABSTRACT

Due to the continuous and adverse effects of microplastics on the environment, an increasing number of studies have begun to focus on their migration patterns and removal from aquatic environments. Herein, our study innovatively evaluated the ability of the capacity of ZIF-67, a novel metal-organic framework (MOF) material, to adsorb polystyrene (PS) microplastics (MPs) from aqueous solutions, aiming to explore the potential of MOF materials to remove MPs from wastewater. The adsorption ratio of PSMPs (5 mg/L, 30 mL) by ZIF-67 reached up to 92.1%, and the PSMP adsorption equilibrium was achieved within 20 min at 298 K. The adsorption of PSMPs would be favored at a pH of 8, a PSMPs solution concentration of 5 mg/L, and a temperature of 298 K. Further analyses demonstrated that hydrogen bond interactions, π-π stacking, and electrostatic interactions played a crucial role in the adsorption of PSMPs by ZIF-67 in aqueous solutions. Our findings thus provide insight into novel methods to remove MPs from acidic and weakly alkaline aquatic environments and wastewater.

16.
Environ Res ; 204(Pt A): 111986, 2022 03.
Article in English | MEDLINE | ID: mdl-34481818

ABSTRACT

A core-heteroshell structural magnetic composite of ZIF-67/Vanadium-titanium magnetite (VTM) was successfully synthesized through a feasible solvothermal method and efficiently used in activation of peroxymonosulfate (PMS) for the treatment of levofloxacin (LVF) in an aqueous solution. The catalytic activity of the ZIF-67/VTM composite in LVF degradation was thoroughly evaluated, demonstrating the LVF removal rate could reach up to 93.3% within 60 min at ZIF-67/VTM composite dosage of 100 mg/L, PMS concertation of 75 mg/L, and the natural pH of 6.4. It is quite interesting that the carbon organic skeleton (in the ZIF-67 shell) have accelerated the internal electron transformation rate of the ZIF-67/VTM composite, thus efficiently promoting the O-O band (in PMS) breakage and the redox cycle of cobalt, further favoring the free radicals generation. The quenching experiments and EPR analysis results demonstrated that ·SO4- would play a crucial role in the LVF degradation process. Surprisingly, we have found that the introduction of Cl- (at some certain dosage) would not always decrease the LVF degradation ratio, for a new reactive oxygen species (singlet oxygen) was emerged in this system. What's more, the ZIF-67 (as the wrapping structure) could stabilize the VTM (the inner structure) in changing reaction conditions, prompting a good adaptability at a wider pH range (3-10) for inhibiting the leaching of various metal ions into the aqueous solution. This novel ZIF-67/VTM composite could provide new ideas and routes for the removal of emerging pollutants from an aqueous solution.


Subject(s)
Ferrosoferric Oxide , Levofloxacin , Peroxides , Titanium , Vanadium
17.
Toxics ; 11(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36668746

ABSTRACT

The generation and accumulation of discarded coal gangue (CG) have severe environmental impacts. CG can adsorb other pollutants in the aquatic environment. However, previous studies have not assessed whether CG can adsorb the emerging contaminant tetracycline hydrochloride (TC). Here, discarded CG taken from a mine was pretreated by crushing, cleaning, and sieving and subsequently applied to the adsorption of TC. The adsorption studies were carried out by batch equilibrium adsorption experiments. Our findings indicated that the adsorption behavior could be accurately described using the quasi-first order kinetic and Langmuir adsorption isotherm models, indicating that monolayer adsorption was the main mechanism mediating the interaction between CG and TC. The adsorption process was classified as a thermodynamic endothermic and spontaneous reaction, which was controlled by chemical and physical adsorption, including electrostatic interaction and cation exchange. The pH of the solution had a great influence on the TC adsorption capacity of GC, with higher adsorption occurring in acidic environments compared to alkaline environments. This was attributed to the changes in CG Zeta potential and TC pKa at different pH conditions. Collectively, our findings demonstrated the potential applicability of discarded CG for the adsorption of TC and provided insights into the adsorption mechanisms.

18.
Ann Palliat Med ; 10(11): 11745-11755, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34872299

ABSTRACT

BACKGROUND: Biliary and hypertriglyceridemic acute pancreatitis (BAP and HTGAP) are two of the leading etiologies in China. Infected pancreatic necrosis (IPN) is a particular and noticeable condition in the late stage of these diseases; however, the influential correlated factors on IPN and how to predict IPN are unclear. METHODS: In this retrospective study, 1,116 patients whose diagnosis was BAP or HTGAP met the inclusion criteria among 1,746 enrolled cases. Clinical characteristics were carefully recorded for further investigation of the factors influencing IPN. During a 6-month follow-up, we analyzed bacterial spectra and postoperative indicators related to minimally invasive necrosectomy. RESULTS: Gallstones and hypertriglyceridemia were the most prevalent causes (52.6% vs. 11.3%). The participants with HTGAP were younger (40 vs. 52 years, P<0.001), had a higher rate of severe acute pancreatitis (SAP) (51.8% vs. 32.0%, P<0.001), and had a higher prevalence of multiple organ dysfunction syndrome (MODS) (26.4% vs. 19.0%, P=0.020) than BAP patients. More IPN cases were noted in the BAP group than in the HTGAP group [20.2% vs. 13.7%; odds ratio (OR): 1.598, 95% confidence interval (CI): 1.027 to 2.451; P=0.034]. Etiologies, C-reactive protein (CRP) levels, Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, and MODS were the factors influencing IPN. The bacterial spectra and the rates of major postoperative complications were not significantly different. CONCLUSIONS: Patients with BAP more frequently developed IPN. Etiology was independently related to the occurrence of IPN. The APACHE II score, MODS, etiology, and CRP contributed to predicting IPN occurrence. Management of IPN substantially improved the prognosis.


Subject(s)
Pancreatitis, Acute Necrotizing , Acute Disease , Humans , Multiple Organ Failure , Retrospective Studies
19.
New Phytol ; 232(6): 2400-2417, 2021 12.
Article in English | MEDLINE | ID: mdl-34618923

ABSTRACT

Mitogen-activated protein kinase (MPK) is a critical regulator of the antioxidant defence system in response to various stimuli. However, how MPK directly and exactly regulates antioxidant enzyme activities is still unclear. Here, we demonstrated that a NAC transcription factor ZmNAC49 mediated the regulation of antioxidant enzyme activities by ZmMPK5. ZmNAC49 expression is induced by oxidative stress. ZmNAC49 enhances oxidative stress tolerance in maize, and it also reduces superoxide anion generation and increases superoxide dismutase (SOD) activity. A detailed study showed that ZmMPK5 directly interacts with and phosphorylates ZmNAC49 in vitro and in vivo. ZmMPK5 directly phosphorylates Thr-26 in NAC subdomain A of ZmNAC49. Mutation at Thr-26 of ZmNAC49 does not affect the interaction with ZmMPK5 and its subcellular localisation. Further analysis found that ZmNAC49 activates the ZmSOD3 expression by directly binding to its promoter. ZmMPK5-mediated ZmNAC49 phosphorylation improves its ability to bind to the ZmSOD3 promoter. Thr-26 of ZmNAC49 is essential for its transcriptional activity. In addition, ZmSOD3 enhances oxidative stress tolerance in maize. Our results show that phosphorylation of Thr-26 in ZmNAC49 by ZmMPK5 increased its DNA-binding activity to the ZmSOD3 promoter, enhanced SOD activity and thereby improved oxidative stress tolerance in maize.


Subject(s)
Gene Expression Regulation, Plant , Zea mays , Mitogen-Activated Protein Kinases/metabolism , Oxidative Stress , Plant Proteins , Zea mays/genetics , Zea mays/metabolism
20.
Biology (Basel) ; 10(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34571770

ABSTRACT

Mitogen-activated protein kinase (MAPK) cascades are primary signaling pathways involved in various signaling pathways triggered by abiotic and biotic stresses in plants. The downstream substrate proteins of MAPKs in maize, however, are still limited. Here, we screened a WRKY IIa transcription factor (TF) in maize (Zeamays L.), ZmWRKY104, and found that it is a substrate of ZmMPK6. ZmWRKY104 physically interacts with ZmMPK6 in vitro and in vivo. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis results showed that threonine-59 (Thr-59, T59) was the major phosphorylation site of ZmWRKY104 by ZmMPK6. Subcellular localization analysis suggested that ZmWRKY104 acts in the nucleus and that ZmMPK6 acts in the nucleus and cytoplasmic membrane in the cytosol. Functional analysis revealed that the role of ZmWRKY104 in ABA-induced antioxidant defense depends on ZmMPK6. Moreover, overexpression of ZmWRKY104 in maize can enhance drought tolerance and relieve drought-induced oxidative damage in transgenic lines. The above results help define the mechanism of the function of ZmWRKY104 phosphorylated by ZmMPK6 in ABA-induced antioxidant defense and drought tolerance in maize.

SELECTION OF CITATIONS
SEARCH DETAIL
...